6 research outputs found

    Development of tsunami early warning systems and future challenges

    Get PDF
    Fostered by and embedded in the general development of information and communications technology (ICT), the evolution of tsunami warning systems (TWS) shows a significant development from seismic-centred to multi-sensor system architectures using additional sensors (e.g. tide gauges and buoys) for the detection of tsunami waves in the ocean. <br><br> Currently, the beginning implementation of regional tsunami warning infrastructures indicates a new phase in the development of TWS. A new generation of TWS should not only be able to realise multi-sensor monitoring for tsunami detection. Moreover, these systems have to be capable to form a collaborative communication infrastructure of distributed tsunami warning systems in order to implement regional, ocean-wide monitoring and warning strategies. <br><br> In the context of the development of the German Indonesian Tsunami Early Warning System (GITEWS) and in the EU-funded FP6 project Distant Early Warning System (DEWS), a service platform for both sensor integration and warning dissemination has been newly developed and demonstrated. In particular, standards of the Open Geospatial Consortium (OGC) and the Organization for the Advancement of Structured Information Standards (OASIS) have been successfully incorporated. <br><br> In the FP7 project Collaborative, Complex and Critical Decision-Support in Evolving Crises (TRIDEC), new developments in ICT (e.g. complex event processing (CEP) and event-driven architecture (EDA)) are used to extend the existing platform to realise a component-based technology framework for building distributed tsunami warning systems

    The evolution of disaster early warning systems in the TRIDEC project

    No full text
    The TRIDEC project (Collaborative, Complex, and Critical Decision Processes in Evolving Crises) focuses on real-time intelligent information management in the Earth management domain and its long-term applications. It is funded under the European Union’s seventh Framework Programme (FP7). The TRIDEC software framework is applied in two application environments, which include industrial subsurface drilling (ISD) and natural crisis management (NCM). For each domain, three consecutive demonstrators with extended capabilities are developed and field-tested during the projects lifespan. This article focuses on the technical advances achieved by the light-, mid- and heavyweight NCM demonstrators for Tsunami Early Warning

    User interface prototype for geospatial early warning systems – a tsunami showcase

    No full text
    The command and control unit's graphical user interface (GUI) is a central part of early warning systems (EWS) for man-made and natural hazards. The GUI combines and concentrates the relevant information of the system and offers it to human operators. It has to support operators successfully performing their tasks in complex workflows. Most notably in critical situations when operators make important decisions in a limited amount of time, the command and control unit's GUI has to work reliably and stably, providing the relevant information and functionality with the required quality and in time. <br><br> The design of the GUI application is essential in the development of any EWS to manage hazards effectively. The design and development of such GUI is performed repeatedly for each EWS by various software architects and developers. Implementations differ based on their application in different domains. But similarities designing and equal approaches implementing GUIs of EWS are not quite harmonized enough with related activities and do not exploit possible synergy effects. Thus, the GUI's implementation of an EWS for tsunamis is successively introduced, providing a generic approach to be applied in each EWS for man-made and natural hazards

    Geomorphic Hazards in Spain

    No full text
    An overview of the main geomorphic hazards in Spain is presented. For each one of the processes analysed (floods, landslides, sinkholes, and coastal hazards), a brief description of their distribution, socioeconomic effects, and main causes is given. The main lines of research undertaken in recent times on these hazards, including development of new tools or techniques, are discussed. Finally, legislation and land-use planning measures for mitigation of risks due to such processes are described
    corecore